2,796 research outputs found

    Dual-frequency ferromagnetic resonance

    Full text link
    We describe a new experimental technique to investigate coupling effects between different layers or modes in ferromagnetic resonance (FMR). Dual FMR frequencies are excited (2-8 GHz) simultaneously and detected selectively in a broadband RF circuit, using lock-in amplifier detection at separate modulation frequencies.Comment: 4 pages, 4 figures, accepted by "Review of Scientific Instruments", 200

    Parametrization of Bose-Einstein correlations and reconstruction of the source function in hadronic Z-boson decays using the L3 detector

    Get PDF
    Bose-Einstein correlations of pairs of identical charged pions produced in hadronic Z decays are analyzed in terms of various parametrizations. A good description is achieved using a Levy stable distribution in conjunction with a hadronization model having highly correlated configuration and momentum space, the tau-model. Using these results, the source function is reconstructed

    Rigorous derivation of coherent resonant tunneling time and velocity in finite periodic systems

    Full text link
    The velocity vresv_{res} of resonant tunneling electrons in finite periodic structures is analytically calculated in two ways. The first method is based on the fact that a transmission of unity leads to a coincidence of all still competing tunneling time definitions. Thus, having an indisputable resonant tunneling time Ď„res,\tau_{res}, we apply the natural definition vres=L/Ď„resv_{res}=L/\tau_{res} to calculate the velocity. For the second method we combine Bloch's theorem with the transfer matrix approach to decompose the wave function into two Bloch waves. Then the expectation value of the velocity is calculated. Both different approaches lead to the same result, showing their physical equivalence. The obtained resonant tunneling velocity vresv_{res} is smaller or equal to the group velocity times the magnitude of the complex transmission amplitude of the unit cell. Only at energies where the unit cell of the periodic structure has a transmission of unity vresv_{res} equals the group velocity. Numerical calculations for a GaAs/AlGaAs superlattice are performed. For typical parameters the resonant velocity is below one third of the group velocity.Comment: 12 pages, 3 figures, LaTe

    Quantum Density Fluctuations in Classical Liquids

    Full text link
    We discuss the density fluctuations of a fluid due to zero point motion. These can be regarded as density fluctuations in the phonon vacuum state. We assume a linear dispersion relation with a fixed speed of sound and calculate the density correlation function. We note that this function has the same form as the correlation function for the time derivative of a relativistic massless scalar field, but with the speed of light replaced by the speed of sound. As a result, the study of density fluctuations in a fluid can be a useful analog model for better understanding fluctuations in relativistic quantum field theory. We next calculate the differential cross section for light scattering by the zero point density fluctuations, and find a result proportional to the fifth power of the light frequency. This can be understood as the product of fourth power dependence of the usual Rayleigh cross section with the linear frequency dependence of the spectrum of zero point density fluctuations. We give some estimates of the relative magnitude of this effect compared to the scattering by thermal density fluctuations, and find that it can be of order 0.5% for water at room temperature and optical frequencies. This relative magnitude is proportional to frequency and inversely proportional to temperature. Although the scattering by zero point density fluctuation is small, it may be observable.Comment: 7 page

    CP sensitive observables in chargino production and decay into a W boson

    Full text link
    We study CP sensitive observables in chargino production in electron-positron collisions with subsequent two-body decay of one chargino into a W boson. We identify the CP odd elements of the W boson density matrix and propose CP sensitive triple-product asymmetries of the chargino decay products. We calculate the density-matrix elements, the CP asymmetries and the cross sections in the Minimal Supersymmetric Standard Model with complex parameters \mu and M_1 for an e+ e- linear collider with \sqrt{s} = 800 GeV and longitudinally polarized beams. The asymmetries can reach 7% and we discuss the feasibility of measuring these asymmetries.Comment: 23 pages, 7 figure

    Quantum bath refrigeration towards absolute zero: unattainability principle challenged

    Full text link
    A minimal model of a quantum refrigerator (QR), i.e. a periodically phase-flipped two-level system permanently coupled to a finite-capacity bath (cold bath) and an infinite heat dump (hot bath), is introduced and used to investigate the cooling of the cold bath towards the absolute zero (T=0). Remarkably, the temperature scaling of the cold-bath cooling rate reveals that it does not vanish as T->0 for certain realistic quantized baths, e.g. phonons in strongly disordered media (fractons) or quantized spin-waves in ferromagnets (magnons). This result challenges Nernst's third-law formulation known as the unattainability principle

    Heisenberg exchange in magnetic monoxides

    Full text link
    The superexchange intertacion in transition-metal oxides, proposed initially by Anderson in 1950, is treated using contemporary tight-binding theory and existing parameters. We find also a direct exchange for nearest-neighbor metal ions, larger by a factor of order five than the superexchange. This direct exchange arises from Vddm coupling, rather than overlap of atomic charge densities, a small overlap exchange contribution which we also estimate. For FeO and CoO there is also an important negative contribution, related to Stoner ferromagnetism, from the partially filled minority-spin band which broadens when ionic spins are aligned. The corresponding J1 and J2 parameters are calculated for MnO, FeO, CoO, and NiO. They give good accounts of the Neel and the Curie-Weiss temperatures, show appropriate trends, and give a reasonable account of their volume dependences. For MnO the predicted value for the magnetic susceptibility at the Neel temperature and the crystal distortion arising from the antiferromagnetic transition were reasonably well given. Application to CuO2 planes in the cuprates gives J=1220oK, compared to an experimental 1500oK, and for LiCrO2 gives J1=4 50oK compared to an experimental 230oK.Comment: 21 pages, 1 figure, submitted to Phys. Rev. B 1/19/07. Realized J=4V^2/U applies generally, as opposed to J=2V^2/U from one-electron theory (1/28 revision

    Phonon-induced relaxation of a two-state system in solids

    Full text link
    We study phonon-induced relaxation of quantum states of a particle (e.g., electron or proton) in a rigid double-well potential in a solid. Relaxation rate due to Raman two-phonon processes have been computed. We show that in a two-state limit, symmetry arguments allow one to express these rates in terms of independently measurable parameters. In general, the two-phonon processes dominate relaxation at higher temperature. Due to parity effect in a biased two-state system, their rate can be controlled by the bias.Comment: 5 PR pages, 1 figur
    • …
    corecore